A Coupled Indian Buffet Process Model for Collaborative Filtering

نویسنده

  • Sotirios Chatzis
چکیده

The dramatic rates new digital content becomes available has brought collaborative filtering systems in the epicenter of computer science research in the last decade. In this paper, we propose a novel methodology for rating prediction utilizing concepts from the field of Bayesian nonparametrics. The basic concept that underlies our approach is that each user rates a presented item based on the latent genres of the item and the latent interests of the user. Each item may belong to more than one genre, and each user may belong to more than one latent interest class. The number of existing latent genres and interests are not known beforehand, but should be inferred in a data-driven fashion. We devise a novel hierarchical factor analysis model to formulate our approach under these assumptions. We impose suitable priors over the allocation of items into genres, and users into interests; specifically, we utilize a novel scheme which comprises two coupled Indian buffet process priors that allow the number of latent classes (genres/interests) to be automatically inferred. We experiment on a large set of real ratings data, and show that our approach outperforms four common baselines, including two very competitive state-of-the-art approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

A Coupled Indian Bu↵et Process Model for Collaborative Filtering

The dramatic rates new digital content becomes available has brought collaborative filtering systems in the epicenter of computer science research in the last decade. In this paper, we propose a novel methodology for rating prediction utilizing concepts from the field of Bayesian nonparametrics. The basic concept that underlies our approach is that each user rates a presented item based on the ...

متن کامل

QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering

Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...

متن کامل

Central Limit Theorems for an Indian Buffet Model with Random Weights

The three-parameter Indian buffet process is generalized. The possibly different role played by customers is taken into account by suitable (random) weights. Various limit theorems are also proved for such generalized Indian buffet process. Let Ln be the number of dishes experimented by the first n customers, and let Kn = (1/n) ∑n i=1 Ki where Ki is the number of dishes tried by customer i. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012